
実習2025

実習２０２５

強化学習編

作成：原　武史（岐阜大学）＋ChatGPT5＋ChatGPT4o-mini
作成日：2025/8/30，2025/9/7修正

1

実習2025

目　　次

この書類の目的	 	 	 	 	 	 	 	 	 	 	 3
配布内容	 	 	 	 	 	 	 	 	 	 	 	 3
動作環境の構築	 	 	 	 	 	 	 	 	 	 	 4
	
内容
迷路の解法探索を強化学習で行う	 	 	 	 	 	 	 	 5
在庫管理問題を強化学習で行う	 	 	 	 	 	 	 	 	 6
ナップサック問題を強化学習で解く	 	 	 	 	 	 	 	 7
フローショップスケジューリング問題を強化学習で解く	 	 	 	 	 8

2

実習2025

この書類の目的

いわゆる数理最適化問題は，Operations Research分野で十分に議論されてきた．
ここでは，そのような内容はすっとばして，機械学習（特に強化学習：Reinforcement
Learning, RL）を使って解法や順最適解を探索するためのヒントを記す．

配布内容

ReinforcementLearning.zip

にサンプルプログラムをまとめる．

3

実習2025

動作環境の構築（別途資料あり）
１．Python環境の構築
	 venvを利用してPythonの仮想環境を構築．

２．仮想環境へのライブラリのインストール
	 以下のPythonライブラリが必要です．
	 仮想環境へpip/pip3でインストールしてください．
	 数値計算系：numpy, scipy,
	 グラフ・表示系：matplotlib, scikit-image, pillow
	 表の処理系：pandas
	 機械学習系：scikit-learn
	 内部処理系：joblib, tqdm
	 強化学習関連：gymnasium

３．同封のプログラムを実行するとバージョンが表示される．
	 以下は原が実行している環境である．

$ python3 check_versions.py
numpy : 1.26.4
scipy : 1.15.3
matplotlib : 3.10.3
skimage : 0.25.2
PIL : 10.2.0
pandas : 2.3.0
sklearn : 1.6.1
joblib : 1.5.1
tqdm : 4.67.1
gymnasium : 1.2.0

４．jupyter notebookの起動

（注意）
なし．

4

実習2025

迷路の解法探索を強化学習で行う

ファイル名：		 maze.ipynb

目的：強化学習の概念を理解する

方法：迷路の解法探索を強化学習の問題に落とし込む

（概念）
強化学習の基本は MDP（Markov Decision Process，マルコフ決定過程） です．
迷路は自然にこの形に当てはまります：
・状態 (State)：今どのマスにいるか
・行動 (Action)：上下左右の移動
・遷移 (Transition)：行動をとると次のマスに移動（壁があれば移動できない）
・報酬 (Reward)：
	 ゴールに着いたら +1
	 それ以外は 0（または -0.01 で「早くたどり着け」を促す）

（動作原理）
最初はランダムに動くので「迷子」になります．
しかし，ゴールに到達したときだけ報酬を受け取る
すなわち，「この経路がよかった」と経験が残る．
Q学習は，「その状態でその行動を選んだときの期待報酬」を表す「Q値」を更新する．
だんだん「どのマスでどちらに動けば良いか」がわかる．
その結果，最短経路を選べるようになる．

（他の方法との違い）
代表的なダイクストラ法や幅優先探索とは違う．
迷路の最短経路は，グラフ探索アルゴリズム（Dijkstra, BFS） で簡単に解ける．

（なぜ強化学習を使うのか？）
環境のルールがわからなくても学習できる．
探索アルゴリズムは地図や遷移モデルが与えられる必要がある．
強化学習は「行動してみて，結果と報酬を観察するだけ」で方策を学ぶ．
だから「未知の環境」「確率的に動く環境」でも適応可能と考えられる．
つまり，ゴールまでの道を試行錯誤で学ぶ　行動を学習で行なっている．

5

実習2025

在庫管理問題をDP／強化学習で行う

ファイル名：		 DP.ipynb	 線形計画法（Dynamic Programming）
	 	 	 RL.ipynb	 強化学習

目的：最適化問題を２つの方法で取り組み比較する．

そもそも，在庫管理問題とは？
・在庫がないと売るものがない
・しかし，在庫が多いと管理費用がかかる
・いっぽう，在庫を発注すると費用がかかる
おおよそ
・在庫が少なければ「たくさん発注する」方が良い
・在庫が多ければ「発注しない」方が良い
の方策になるが，ではどのくらい発注したらよいか最適な値があるか？

－＞簡単な問題は最適化問題で解かれている．
DPを解くことで「その場で一番良い発注数」＝ optimal order a* が決まる．

方法：
１．DPで解いてみる：DP.ipynb
２．強化学習で解いてみる：RL.ipynb
３．DPと強化学習を比較する：RL.ipynb（の最後のほう）
４．強化学習の改良を試みる

ねらい：
・古典的には DP（動的計画法）で解ける問題
・でも RL を使うことで「最適解が求めにくい問題」にも応用できる
・強化学習は最適解を知らなくても，経験から近い解を学べることを理解！

6

実習2025

ナップサック問題を強化学習で解く

ファイル名：		 Knapsack.ipynb

目的：組み合わせ最適化ができる問題をあえて強化学習で解いてみる．

ナップサック問題とは？
容量制限のあるカバンに価値の高いアイテムを詰めて，合計価値を最大化する問題．

方法：ナップサック問題を強化学習で解く考え方

	 状態 (state)：
	 	 どのアイテムまで意思決定したか（インデックス i）
	 	 残り容量 cap
	 行動 (action)：
	 	 そのアイテムを 入れる (1)
	 	 入れない (0)
	 	 （ただし重さが残容量を超えるときは「入れる」は禁止）
	 報酬 (reward)：
	 	 中間報酬は 0
	 	 エピソード終了時に「選んだアイテムの価値合計」をまとめて報酬にする
	 方策 (policy)：
	 	 ニューラルネットが「状態→確率分布（入れる／入れない）」を出力
	 	 許されない行動はマスクして選ばせない
	 学習 (learning)：
	 	 REINFORCE（方策勾配）で「価値が大きかった行動系列」の確率を高める
	 	 移動平均ベースラインを使い，報酬のブレを減らして安定化

ねらい（くりかえし）：
・古典的には DP（動的計画法）で解ける問題
・でも RL を使うことで「最適解が求めにくい大規模ナップサック」にも応用できる
・強化学習は最適解を知らなくても，経験から近い解を学べることを理解！

7

実習2025

フローショップスケジューリング問題を強化学習で解く

目的：フローショップスケジューリングを簡単な例から複雑な例へ拡張．

内容：
１．機械２台でJohnson規則で解く
	 機械２台ならば厳密解が存在する．それを確認．
	 利用ファイル：FlowShop_Johnson.ipynb

２．機械２台で強化学習で解いて，Johnson則と比較
	 強化学習で得た機械２台の結果が理想になるか？
	 利用ファイル：FlowShop_RL_2M.ipynb

３．機械３台で強化学習で解く（１）．
	 機械３台になると途端に難しくなる傾向がある．それを解く．
	 利用ファイル：FlowShop_RL_3M.ipynb

４．機械３台で強化学習で解く（２）．
	 ジョブはセット（S），処理（Process: P），取り外し（Remove: R）がある．
	 それらの時間を与えて，強化学習で解く．
	 利用ファイル：FlowShop_RL_3M_SPR.ipynb

５．機械n台で強化学習で解く（３）．
	 機械の台数を増やして解く．
	 利用ファイル：FlowShop_RL_nM_SPR.ipynb

8

実習2025

ジョブショップスケジューリング問題を強化学習で解く

目的：ジョブショップスケジューリングを簡単な例から複雑な例へ拡張．

理解：ジョブとフローの違いの理解が必要です．

内容：
１．機械２台で強化学習で解いて，自分の結果と比較．
	 強化学習で得た機械２台の結果に勝てるか？
	 利用ファイル：JobShop_2M.ipynb

２．機械３台で強化学習で解く（１）．
	 ジョブはセット（S），処理（Process: P），取り外し（Remove: R）がある．
	 それらの時間を与えて，強化学習で解く．
	 利用ファイル：JobShop_3M_SPR.ipynb

３．機械３台で強化学習で解く（２）．
	 ガントチャートを見ると同時スタートあり．これは無理．
	 まずはセットにだけ人の制約を加えて解く．
	 利用ファイル：JobShop_3M_SPR2.ipynb

４．機械３台で強化学習で解く（３）．
	 機械によっては複数同時にセットできる場合がある．それも加味する．
	 ただしまずは人の制約は外す．
	 利用ファイル：JobShop_3M_SPR3_multi.ipynb

５．機械３台で強化学習で解く（４）．
	 ４に人の条件をつける．ただしセットのときだけ．
	 利用ファイル：JobShop_3M_SPR3_multi2.ipynb

６．機械３台で強化学習で解く（４）．
	 ５に人の条件をさらにつける．つまり取り外しも重ならないように制約．
	 利用ファイル：JobShop_3M_SPR3_multi3.ipynb

9

実習2025

ジョブショップスケジューリング問題を強化学習で解く（２）

目的：
・機械３台，操作者１人．３台のうち１台は２つワークをセットできる条件で最適化．

利用ファイル：
JobShop_3M_SPR3_multi4.ipynb

データの説明：
これをリアルデータから読み取って設定できるようにする．

#全部で6つのジョブ（製品や作業のまとまり）があるという意味です．
N_JOBS = 6

#機械は3台あります．M0，M1，M2 と番号を振っています．
N_MACH = 3

#各ジョブは3つの工程（オペレーション）を順番に通る必要があります．
N_OPS = 3

#各ジョブがどの順番で機械を使うかを指定しています．
#例えば Job0: [0,1,2] は，Job0 は M0 → M1 → M2 の順に処理されるという意味です．
routes = np.array([
 [0, 1, 2], # Job0: M0 → M1 → M2
 [1, 2, 0], # Job1: M1 → M2 → M0
 [2, 0, 1], # Job2: M2 → M0 → M1
 [0, 2, 1], # Job3: M0 → M2 → M1
 [1, 0, 2], # Job4: M1 → M0 → M2
 [2, 1, 0], # Job5: M2 → M1 → M0
], dtype=np.int32)

#S1 と S2
#セット時間（準備時間）です．人の作業の時間です．
S1 は 1本目のセット（長めの時間）．
S2 は 2本目のセット（同じ機械で同時に2つ扱える場合，短めの時間）．
２台セットできない場合は適当な値でよいです．
S1 = np.array([[4,3,5],[5,4,3],[4,5,4],[3,4,4],[5,3,5],[4,4,3]], dtype=np.int32)
S2 = np.array([[2,2,3],[3,2,2],[2,3,2],[2,2,2],[3,2,3],[2,2,2]], dtype=np.int32)

#プロセス時間（加工時間）です．

10

実習2025

#これは機械が動いている時間で，人は関与しません．
#仮の値として，セットやリムーブよりずっと長くしています．
P = np.array([[40,55,35],[35,45,60],[55,30,45],[30,65,40],[50,35,45],[45,50,30]],
dtype=np.int32)
#リムーブ時間（取り外し時間）です．
#これは人の作業です．工程が終わった後に，製品を機械から取り外す時間です．
R = np.array([[13,12,13],[13,13,12],[12,13,13],[12,12,12],[13,12,12],[12,12,12]],
dtype=np.int32)

#機械ごとに同時にセットできるスロット数です．
#M1だけ2つ扱えるように設定してあります．
SET_CAP_MAP = {0:1, 1:2, 2:1}

処理の流れ：
１．入力データの定義
上で説明した routes，S1，S2，P，R，SET_CAP を配列で与えます．

２．スケジューラの実行
・各ジョブの工程（Set → Process → Remove）を順番にシミュレーションします．
・オペレータ（人）は同時に1つしか作業できない．
・Set と Remove の時間は重なりません．
・前の工程が Remove まで完了しないと次の工程に進めません．

３．スケジュール表（イベント列）の生成
・各イベント（Set/Process/Remove）が「いつ開始して，いつ終了したか」を
　表に書き出します．
・CSVやJSONLの形で保存できます．

４．推定した出力
４．１　イベント表
列は phase, job, job_name, op, machine, machine_name, slot, start, end, dur,
uses_operator です．
例えば
Set, Job0, Op0, M0, start=0, end=4, dur=4, uses_operator=True
は
「Job0の最初の工程をM0 にセットする作業Op0を，
　0時刻から4時刻までオペレータ（今回は一人だけしかいないので出てこない）が
　行う．かつ，これは人が行う作業である．」
という意味です．

11

実習2025

４．２　ガントチャートと推定時間，単純なシナリオとの比較．
機械ごとの時間軸に，どのジョブがいつ処理されていたかを色で表示します．Set はハッ
チング，Process は塗りつぶし，Remove は別の色で区別されます．これで直感的に流
れを理解できます．また，

Cmax (final): 454

として，強化学習では，４５４時刻によって処理されることが示されます．

図１　ガントチャートの例．ジョブごとに色分け．セット，プロセス，リムーブで同じ色
の濃度で表現（セット：濃い，プロセス：中，リムーブ：薄い）．機械M0とM2は１つし
かワークを持てない．M1は２つワークを持てるので２段で表示．２つセットされた場合
には，セットの領域をXでハッチング．１つしかない場合には／でハッチング．

単純なシナリオは，
「先に全ジョブの工程0（最初の工程）をまとめ，次に全ジョブの工程1，最後に工程2」
です．素直に，Op0,Op1,Op2をこなしていく手順です．この場合には，

Cmax (final): 491

となり，４９１時刻（＞４５４）で処理されることがわかります．

12

実習2025

図２　単純シナリオのガントチャートの例．

要注意：本当に正しいか，矛盾がないかは，原は未確認です！
Removeが可視化されていないように見えますが，薄い／時間が
短いだけかも．

４．３　オペレータのタイムライン
オペレータがいつどの作業をしていたか（Set/Removeだけ）をまとめた表です．人の稼
働率や待機時間が分析できます．

表１　タイムラインの例．

s: start, e: end, d: duration, start と endの時間区間にオペレータが作業していたことを表します．

dur：作業の合計時間（end − start）です．

tasks：その区間でオペレータが担当した作業のリストです．

s e d tasks

0 13 13 ['Set Job0-O0 on M0', 'Set Job1-O0 on M1', 'Set Job2-O0 on M2']

44 104 60 ['Set Job3-O0 on M0', 'Remove Job0-O0 on M0', 'Remove Job1-O0 on M1', 'Remove Job2-
O0 on M2', 'Remove Job3-O0 on M0', 'Set Job4-O0 on M1', 'Set Job5-O0 on M2']

150 187 37 ['Set Job0-O1 on M1', 'Remove Job5-O0 on M2', 'Remove Job4-O0 on M1', 'Set Job1-O1
on M2', 'Set Job2-O1 on M0']

227 274 47 ['Set Job3-O1 on M2', 'Remove Job0-O1 on M1', 'Remove Job2-O1 on M0', 'Remove Job1-
O1 on M2', 'Set Job4-O1 on M0', 'Set Job5-O1 on M1']

296 357 61 ['Set Job0-O2 on M2', 'Remove Job3-O1 on M2', 'Remove Job4-O1 on M0', 'Remove Job5-
O1 on M1', 'Remove Job0-O2 on M2', 'Set Job1-O2 on M0', 'Set Job2-O2 on M1']

402 437 35 ['Set Job3-O2 on M1', 'Remove Job2-O2 on M1', 'Remove Job1-O2 on M0', 'Set Job4-O2
on M2', 'Set Job5-O2 on M0']

444 456 12 ['Remove Job3-O2 on M1']

467 491 24 ['Remove Job5-O2 on M0', 'Remove Job4-O2 on M2']

13

実習2025

（例）

[Set Job0-O0 on M0, Remove Job1-O0 on M1]
は，
「Job0 の最初の工程を M0 にセットした後，Job1 の最初の工程を M1 から取り外し
た」という流れ．

start=0, end=13, dur=13
tasks = [Set Job0-O0 on M0, Set Job1-O0 on M1, Set Job2-O0 on M2]
は，
・時刻0から13までの13単位時間，オペレータはずっと作業していた．
・そこでは，まず Job0 を M0 にセット，次に Job1 を M1 にセット．
　さらに Job2 を M2 にセットした．
・ここでは「順番に」こなしていることを意味し，同時に3つをやったわけではない．

４．４　まとめ
・オペレータのタイムラインは，人が関わった作業の履歴を時系列にまとめたもの．
・各区間（start～end）は「オペレータが休まず作業を続けていた時間」．
・tasks のリストは，その間にこなした作業の順番を表す．

５．生成したイベントをLLMへ送って文書化してみる
（方法：実装した関数）
out_text = ask_gpt5_about_schedule("./schedule_events.csv", model="gpt-4o-
mini", stream=True)

GPT4o-miniの出力例：
1) 時系列サマリ
- Job0のセットとプロセスが最初に行われ、終了後にRemoveされる。
- Job1、Job2、Job3が順次処理され、各セット後にプロセスが続く。
- 各Jobの終了後にはRemoveが実施され、次のジョブが開始される。
- Job4とJob5はそれぞれセット、プロセスを経てRemoveされる。
- 各ジョブの処理時間は異なるが、オペレータと機械は一貫して管理されている。

2) ボトルネック分析
- **機械M0**:
 - 時間帯 44～77: M0はJob0とJob3を処理中（占有状態）。
 - 時間帯 183～217: M0でJob2が処理中（占有状態）。
 - 時間帯 301: M0でRemoveが行われている。

14

実習2025

- **機械M1**:
 - 時間帯 97～150: M1はJob4を処理中。
 - 時間帯 182～274: M1でJob1がセット/プロセス中（オペレータ待機）。

- **オペレータ**:
 - 時間帯 153～165: Job0がRemove待ちでM1がオペレータ過負荷。
 - 時間帯 417～429: Job1がRemoveされるまでオペレータ待機。

3) 改善アイデア
1. **ジョブ順序の最適化**: Removeを非同期で実施するなど、後続ジョブのセットアップ
を早め、設備の空き時間を最小化。
2. **段取りの効率化**: セット作業の時間短縮や事前準備を行い、オペレータの待機時間を
削減。
3. **並列化の導入**: 複数の機械を使用して、同時進行で異なるJobのプロセスを進め、全
体のリードタイムを短縮。

4) 重要な前提と矛盾の確認
- ジョブ順序に関しては、各Removeが完了してから次の工程（Set）が開始されており、
矛盾は無い。
- 機械占有に関しても、Removeの施行が完了するまで他のJobが影響を受けていないた
め、一貫している。
- オペレータの役割についても、SetとRemoveで使われており、適切なタイミングでの
使用が確認でき、矛盾は無い。

15

実習2025

問題点：
・ワークをリムーブしたときに，別のワークを新たにセットできるのか？
・リムーブする前に新しいワークをセットできるのか？：多分できない．
・リムーブの時間がガントチャートで見にくい：表示方法の工夫が必要．
・セットは続けて行った方がよいはず？
・リムーブも続けて行った方がよいはず？
・機械間での人の移動時間は無視しているが，よいか？
　→どの機械の間での移動も同じ時間．

探索方針：
・悩んだら条件を単純化すること
・評価結果が正しいか，検証班（検証時期）を必ず設ける
・リアルデータから必要な項目を抽出して入力できるようにする

16

