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Layer (type) Output Shape Param #

conv2d_1 (Conv2D) (None, 256, 256, 16) 160

max_pooling2d_1 (MaxPooling2 (None, 128, 128, 16) 0

conv2d_2 (Conv2D) (None, 128, 128, 32) 4640

max_pooling2d_2 (MaxPooling2 (None, 64, 64, 32) 0

conv2d_3 (Conv2D) (None, 64, 64, 64) 18496

max_pooling2d_3 (MaxPooling2 (None, 32, 32, 64) 0

conv2d_4 (Conv2D) (None, 32, 32, 128) 73856

max_pooling2d_4 (MaxPooling2 (None, 16, 16, 128) 0

conv2d_5 (Conv2D) (None, 8, 8, 256) 295168

max_pooling2d_5 (MaxPooling2 (None, 4, 4, 256) 0
flatten_1 (Flatten) (None, 4096) 0
reshape_1 (Reshape) (None, 4, 4, 256) 0

conv2d_6 (Conv2D) (None, 4, 4, 256) 590080

up_sampling2d_1 (UpSampling2 (None, 8, 8, 256) 0

conv2d_7 (Conv2D) (None, 8, 8, 128) 295040

up_sampling2d_2 (UpSampling2 (None, 16, 16, 128) 0

conv2d_8 (Conv2D) (None, 16, 16, 64) 73792

up_sampling2d_3 (UpSampling2 (None, 32, 32, 64) 0

conv2d_9 (Conv2D) (None, 32, 32, 32) 18464

up_sampling2d_4 (UpSampling2 (None, 64, 64, 32) 0

conv2d_10 (Conv2D) (None, 64, 64, 16) 4624

up_sampling2d_5 (UpSampling2 (None, 128, 128, 16) 0

up_sampling2d_6 (UpSampling2 (None, 256, 256, 16) 0

conv2d_11 (Conv2D) (None, 256, 256, 1) 145

Total params: 1,374,465
Trainable params: 1,374,465

Non-trainable params: O
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ROC curve for discriminating normal or abnormal alignments
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Layer (type) Output Shape Param #

conv2d_1_input (InputLayer) (None, 256, 256, 1) 0

conv2d_1 (Conv2D) (None, 256, 256, 16) 160

max_pooling2d_1 (MaxPooling2 (None, 128, 128, 16) 0

conv2d_2 (Conv2D) (None, 128, 128,32) 4640

max_pooling2d_2 (MaxPooling2 (None, 64, 64, 32) 0

conv2d_3 (Conv2D) (None, 64, 64, 64) 18496

max_pooling2d_3 (MaxPooling2 (None, 32, 32, 64) 0

conv2d_4 (Conv2D) (None, 32, 32, 128) 73856

max_pooling2d_4 (MaxPooling2 (None, 16, 16, 128) 0

conv2d_5 (Conv2D) (None, 8, 8, 256) 295168
max_pooling2d_5 (MaxPooling2 (None, 4, 4, 256) 0
flatten_1 (Flatten) (None, 4096) 0

Total params: 392,320
Trainable params: 392,320
Non-trainable params: O




60 80 100 120

100 120 100 120 100 120

Heat map from normal images
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Heat map from abnormal images
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DeepSVDD

SVDD: support vector data description

L. Ruff, R. A. Vandermeulen, N. Gornitz, L. Deecke, A. Binder, S. A. Siddiqui, E. Muller, and M. Kloft: Deep one-class classification, In International Conference
on Machine Learning, pp 4393-4402, (2018).
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L. Ruff, R. A. Vandermeulen, N. Gornitz, L. Deecke, A. Binder, S. A. Siddiqui, E. Muller, and M. Kloft: Deep one-class classification, In International Conference
on Machine Learning, pp 4393-4402, (2018).



DeepSAD

SAD: SEMI-SUPERVISED ANOMALY DETECTION

L. Ruff, R. A. Vandermeulen, N. Gornitz, A. Binder, E. Mller, K--R. Mller, and M. Kloft: Deep semi-supervised anomaly detection, In International Conference on
Learning Representations, (2020).
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(a) Training data (b) Unsupervised AD (OC-SVM)

(d) Semi-supervised classifier (e) Semi-supervised LPUE (f) Semi-supervised AD (ours)

Figure 1: The need for semi-supervised anomaly detection: The training data (shown in (a)) consists
of (mostly normal) unlabeled data (gray) as well as a few labeled normal samples (blue) and labeled
anomalies (orange). Figures (b)—(f) show the decision boundaries of the various learning paradigms
at testing time along with novel anomalies that occur (bottom left in each plot). Our semi-supervised
AD approach takes advantage of all training data: unlabeled samples, labeled normal samples, as
well as labeled anomalies. This strikes a balance between one-class learning and classification.

L. Ruff, R. A. Vandermeulen, N. Gornitz, A. Binder, E. Mller, K.-R. Mller, and M. Kloft: Deep semi-supervised anomaly detection, In International Conference on
Learning Representations, (2020).
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PaDIM

PaDiM: a Patch Distribution Modeling Framework
for Anomaly Detection and Localization
Thomas Defard, Aleksandr Setkov, Angelique Loesch, Romaric Audigier
https://arxiv.org/pdf/2011.08785



Fig. 1. Image samples from the MVTec AD [1]. Left column: normal images
of Transistor, Capsule and Wood classes. Middle column: images of the same
classes with the ground truth anomalies highlighted in yellow. Right column:
anomaly heatmaps obtained by our PaDiM model. Yellow areas correspond to
the detected anomalies, whereas the blue areas indicate the normality zones.
Best viewed in color.

https://arxiv.org/pdf/2011.08785



