= = BT AP

Acoustic/Speech Analysis

XIVAXRZ AT S L
AT KN)LDRE1E

XIVRE/ XIJLAXRT KL

wave form

45

Hz

XILARZ SO 5

db scale mel spectrogram

+0 dB

--10 dB

-20 dB

-30 dB

-40 dB

-50 dB

-60 dB

-70 dB

0 0.6 12 18 24 3 36 42 48

B2/ BEBMOTATA7

- BRINDIEFTZZDERFEDIFKD : LSTM

e BZHEBRICERUTHERSPEDMHEBICEZTIAZ S

BiRICEBTENIE

HE | SEFH2EAU

16x16
x8

ERZERICETIRT DL

ANZ.I
XJLX&O N

AR MVIEADBERFIED 7 1 IILTINY V& FR U IR

Mel-Frequency Cepstrum ;oe5|0|ents MFCC

XILARY NIV Y 1 VO EIRDORE

PCEN

Per-Channel Energy Normalization
https://ieeexplore.ieee.org/document/8514023

Trainable Frontend For Robust and Far-Field Keyword Spotting

Yuxuan Wang, Pascal Getreuer, Thad Hughes, Richard F. Lyon, Rif A. Saurous

Google, Mountain View, USA

{yxwang, getreuer, thadh,dicklyon, rif}@google.com

Abstract

Robust and far-field speech recognition is critical to enable
true hands-free communication. In far-field conditions, sig-
nals are attenuated due to distance. To improve robustness to
loudness variation, we introduce a novel frontend called per-
channel energy normalization (PCEN). The key ingredient of
PCEN is the use of an automatic gain control based dynamic
compression to replace the widely used static (such as log or
root) compression. We evaluate PCEN on the keyword spot-
ting task. On our large rerecorded noisy and far-field eval sets,
we show that PCEN significantly improves recognition perfor-
mance. Furthermore, we model PCEN as neural network layers
and optimize high-dimensional PCEN parameters jointly with
the keyword spotting acoustic model. The trained PCEN fron-
tend demonstrates significant further improvements without in-
creasing model complexity or inference-time cost.

Index Terms: Keyword spotting, robust and far-field speech
recognition, automatic gain control, deep neural networks

used frontend is the so-called log-mel frontend, consisting of
mel-filterbank energy extraction followed by log compression,
where the log compression is used to reduce the dynamic range
of filterbank energy. However, there are several issues with
the log function. First, a log has a singularity at 0. Com-
mon methods to deal with the singularity are to use either a
clipped log (i.e. log(max(offset,x))) or a stabilized log (i.e.
log(x+offset)). However, the choice of the offset in both meth-
ods 1s ad hoc and may have different performance impacts on
different signals. Second, the log function uses a lot of its dy-
namic range on low level, such as silence, which is likely the
least informative part of the signal. Third, the log function is
loudness dependent. With different loudness, the log function
can produce different feature values even when the underlying
signal content (e.g. keywords) is the same, which introduces an-
other factor of variation into training and inference. Although
techniques such as mean—variance normalization [6] and cep-
stral mean normalization [7] can be used to alleviate this issue
to some extent, it is nontrivial to deal with time-varying loud-

https://arxiv.org/pdf/1607.05666.pdf

! I W ' -
A Wm{ﬂ ad el

30

f x Al (3

(| | :

— 25 8
g f
c
€ 20 ‘ s" 6
© |"'
'6 15 1 4

=
o

w

200 250 350
Frame

(a) log-mel frontend

Channel
S

0 50 100 150 200 250 300 350
Frame

(b) PCEN frontend

Figure 1: log-mel and PCEN features on a speech utterance.

https://arxiv.org/pdf/1607.05666.pdf

XILARZ SO 5
FCS-50DF)

Audio

ESC-50

Introduced by Karol J. Piczak in ESC: Dataset for Environmental Sound Classification

The ESC-50 dataset is a labeled collection of 2000 environmental audio recordings suitable for benchmarking methods

of environmental sound classification. It comprises 2000 5s-clips of 50 different classes across natural, human and

domestic sounds, again, drawn from Freesound.org.

Source: [® The NIGENS General Sound Events Database

LO5 O1 MelSpectrogram

. 4 T

The latest from Google Research

- .
Y w
Launching the SPeecl ConMmands Dataset

'Speech Command Dataset

At Google, we're often asked how to get started using deep learning for speech and other audio
recognition problems, like detecting keywords or commands. And while there are some great open
source speech recognition systems like Kaldi that can use neural networks as a component, their
sophistication makes them tough to use as a guide to a simpler tasks. Perhaps more importantly,
there aren’'t many free and openly available datasets ready to be used for a beginner’s tutorial
(many require preprocessing before a neural network model can be built on them) or that are well
suited for simple keyword detection.

To solve these problems, the TensorFlow and AlY teams have created the Speech Commands
Dataset, and used it to add training” and inference sample code to TensorFlow. The dataset has
65,000 one-second long utterances of 30 short words, by thousands of different people,
contributed by members of the public through the AlY website. It's released under a Creative
Commons BY 4.0 license, and will continue to grow in future releases as more contributions are
received. The dataset is designed to let you build basic but useful voice interfaces for applications,
with common words like “Yes”, “No”, digits, and directions included. The infrastructure we used to
create the data has been open sourced too, and we hope to see it used by the wider community to
create their own versions, especially to cover underserved languages and applications.

To try it out for yourself, download the prebuilt set of the TensorFlow Android demo applications
and open up “TF Speech”. You'll be asked for permission to access your microphone, and then see

a list of ten words, each of which should light up as you say them. LO 5 O 2 't LO 5 04

https://ai.googleblog.com/2017/08/launching-speech-commands-dataset.html

HEMNS INFEZ U,
waveZzvec

LO5_02 to LO5_05

SPEECH_URL = "h

7 SPEECH FILE = ”

1 bundle = torchaudio.pipelines. WAVZYECZ ASR _BASE 8960H

3 print("Sample Rate:™, bundle.sample_rate)

if not os.path.exists(SPEECH FILE):

os.makedirs

with open(SPEECH FILE, “wh™) as file:

file.wr

5 print("Labels:”

sample Rate: 16000

J

i
3 print (model. o

<class “torchaudio.n

[abales = 1 o]

ttps://pytorch-tutorial-assets.s3.amazonaws.com/Y0iCES_dev
_assets/speech.way”

(" _assets”, exist_ok=True)

ite(requests.get (SPEECH LURL) .content)

, bundle.gzet labels())

y U 3

model = hundle.

[Python.display

» 0:03/0:03

nrint (transcript)
[Python.display.fudio(SPEECH FILE)

[[HAD|[THAT|CURTIOSITY [BESIDE [ME[AT[THIS [MOMENT |

p 0:00/ 0:03

O

